Hierarchy of classification

Didactic material for the MaThCryst schools

Massimo Nespolo, Université de Lorraine, France
massimo.nespolo@univ-lorraine.fr
Point group

$m \overline{3} m$

Symmorphic space group

$P \overline{1} m m$

site-symmetry group at the origin: $m \overline{3} m$

Hemisymmorphic space group

$P \overline{1} n n$

s.-s. group at the origin: 222

Asymmorphic space group

$P \overline{m} m a$

s.-s. group at the origin: $\overline{2}/m$

Asymmorphic space group

$P c c a$

s.-s. group at the origin: $\overline{1}$
A geometric crystal class which represents a full symmetry of a lattice is called a **holohedry**. Otherwise, a **merohedry**.
Crystal systems
Space groups and crystal structures whose point group act of the same type of Bravais lattice belong to the same crystal system.

H, G: point groups $\quad H \quad G$

If G acts on lattice, then H to acts on the same lattice

If H acts on lattice, G does not necessarily act on the same lattice

Ex. 1: $m\bar{3}m$ (G) acts on cP, cI, cF. $23, m3, 432, \bar{4}3m$ (H) act on the same lattices

23 (H) acts on cP, cI, cF. $m\bar{3}m$ (G) act on the same lattices. Etc.

Crystals with point groups $m\bar{3}m, m3, 432, \bar{4}3m, 23$

all belong to the cubic crystal system.

Ex. 2: $6/mmm$ (G) acts on hP. $6, \bar{6}, 6/m, 622, 6mm, \bar{6}2m, 3, \bar{3}, 32, 3m, \bar{3}m$ (H) act on hP too.

$\bar{3}m$ (H) acts on hP and hR but $6/mmm$ (G) does not act on hR.

6 (H) acts on hP. $6/mmm$ (G) acts on hP too.

Crystals with point groups $6/mmm, 6, \bar{6}, 6/m, 622, 6mm, \bar{6}2m$ all belong to the hexagonal crystal system. Those with point groups $3, 3, 32, 3m, \bar{3}m$ belong to the trigonal crystal system.
Lattice systems
Space groups and crystal structures which correspond to the same holohedry belong to the same lattice system.

Ex. 1: $23P$ and $m3P$ correspond to the $m\overline{3}m$ holohedry and belong to the cubic lattice system.

Ex. 2: $32P$ and $622P$ correspond to the $6/mmm$ holohedry and belong to the hexagonal lattice system.

Ex. 3: $32R$ and $622P$ correspond to the different holohedries ($\overline{3}m$ and $6/mmm$). $32R$ belong to the rhombohedral lattice system, whereas 622 belongs to the hexagonal lattice system.
Crystal families
Space groups and crystal structures whose lattices have the same number of free parameters belong to the same crystal family if the corresponding point groups are in group-subgroup relation.

Ex. 1: Two crystals with holohedries $4/mmm$ and $6/mmm$ have lattices with two free parameters (a and c). However, $4/mmm$ and $6/mmm$ are not in group-subgroup relation and thus the two crystals belong to different crystal families (tetragonal and hexagonal).

Ex. 2: Two crystals with holohedries $\overline{3}m$ and $6/mmm$ have lattices with two free parameters (a and c). Furthermore, $\overline{3}m$ is a subgroup of $6/mmm$ and thus the two crystals belong to the same crystal family (hexagonal).
Bravais classes
Bravais classes

Point group order

https://doi.org/10.1107/S1600576718012724
Bravais classes

Point group order

https://doi.org/10.1107/S1600576718012724
Bravais classes

Point group order

https://doi.org/10.1107/S1600576718012724
Bravais classes

https://doi.org/10.1107/S1600576718012724